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Abstract

This paper investigates suppression of vibrations in 2dof forced linear system with a nonlinear energy sink (NES)

attached. Ability of the properly tuned single NES to successfully absorb energy from both excited modes of the linear

subsystem is demonstrated. The proposed methodology of the NES tuning is based on the results of analytic treatment.

The strongly nonlinear vibration absorber is compared to the best-tuned linear one and excitation zones of preference of

the nonlinear absorber are revealed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The most popular solution in a vibration isolation design is a linear vibration absorber. This solution is
based on the additional linear degree-of-freedom (dof) attachment to the existing linear or weakly nonlinear
system for the purpose of attenuating vibration over relatively narrow frequency range. This range is centered
at the natural frequency of the absorber [1–3]. Effective bandwidth is governed by the damping in the
absorber, and a trade-off exists between attenuation efficiency and bandwidth. The problem of a tuned linear
vibration absorber coupled to a multi-degree-of-freedom (mdof) primary linear system has been studied
extensively in Refs. [4–6].

The linear absorber poses problems when the excitation frequency is not fixed [7], and the frequency
response in the neighborhood of existing structural resonances can be adversely affected by the absorber to the
extent that the resonant peaks can become very steep [7]. Weakly nonlinear absorbers were proposed for the
cases of alternating excitation frequency. They turned out to be effective for somewhat wider frequency range
than the linear absorbers [7–11].

Systems comprised of linear substructures with essentially nonlinear attachments are also intensively studied
from the viewpoint of the vibration mitigation. Irreversible transient transfer (pumping) of energy from the
substructure to the essentially nonlinear attachment was demonstrated and studied in Refs. [12–15]. In the
same papers it has been shown that properly designed, essentially nonlinear local attachments may passively
absorb energy from transiently loaded linear subsystems, acting as nonlinear energy sinks (NESs).
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Addition of a relatively small and spatially localized nonlinear attachment leads to an essential change in the
properties of the whole system. Unlike common linear and weakly nonlinear systems, systems with strongly
nonlinear elements are able to react efficiently on the amplitude characteristics of the external forcing in a wide
range of frequencies [15,16].

It was demonstrated [13,14] that the possibility of the energy pumping phenomenon in non-conservative
systems can be understood and explained by studying the energy dependence of the nonlinear un-damped free
periodic solutions (nonlinear normal modes (NNM)) of the corresponding conservative system which are
obtained when all damping forces are eliminated. Recent investigation [17] based on the approach of invariant
manifolds [18,19] has introduced an asymptotic procedure suitable for explicit inclusion of damping within the
framework of NNMs.

The steady-state response of the single degree-of-freedom (sdof) linear system with strongly nonlinear
attachment to external forcing loading was studied in paper [20]. It was shown theoretically and
experimentally that, in spite of weak coupling an essentially nonlinear attachment is capable of absorbing
steady-state vibration energy from the linear oscillator, thus localizing the energy away from the directly
forced subsystem. The energy absorption by strongly nonlinear attachment is realized over a relatively broad
frequency range, making it effective over a range of frequencies.

In recent studies it was demonstrated [21,22] that in close vicinity of the main resonance the system with
NES can exhibit quasi-periodic rather than simple periodic response, leading to qualitatively different
dynamical behavior. As it was shown in paper [22], strong mass asymmetry in periodically forced systems with
essential nonlinearity may cause response regime qualitatively different from either simply periodic or weakly
modulated regimes in the vicinity of 1:1 resonance. This regime is characterized by very deep oscillations of the
modulated amplitude comparable to the amplitude of the response itself. This response regime was considered
in papers [22,23] and referred to as strongly quasi-periodic response (SQR). In fact, as it was demonstrated in
Ref. [23] such response may be also phase locked or chaotic. In order to emphasize the difference of the
response from simply periodic and weakly modulated quasi-periodic response we use the term ‘‘strongly
modulated response’’ (SMR). In the same paper [23], novel analytic approach was proposed for the SMR
description.

Possible effectiveness of the SMR for vibration absorption and mitigation compared to the best-tuned linear
vibration absorber was demonstrated in Ref. [24]. Extension of the system studied in Refs. [22–24] by
frequency detuning parameter inclusion in the analysis was carried out in Refs. [29,30]. Novel tools for
prediction of the SMR in the extended system via one-dimensional (1D) maps were described in Ref. [30].

Recently the efficiency of the NES in vibration suppression and mitigation has obtained additional
experimental approval. In paper [29] the effects of energy pumping with transient forcing and strongly
nonlinear coupling were verified experimentally. In paper [31] the NES was efficiently used for suppression
of the aeroelastic instability. Experimental evidence of the energy pumping in acoustics is described in
Ref. [32].

The results mentioned above have motivated us to extend the analytic and numeric treatment developed
in Refs. [22–24,29–30] to a harmonically excited 3dof system (including NES attached). Thus, we investi-
gate the performance of essentially nonlinear vibration absorber attached to forced mdof linear primary
system.

The structure of the paper is as follows. The second section is devoted to model description. Section 3 brings
an analytical treatment including periodic regimes and SMR description. Section 4 is fully based on the
analytic treatment developed in Section 3 and provides NES tuning guidelines. Section 5 contains numerical
verifications of the analytical model and also studies effectiveness of the NES compared to the linear
vibrations absorber. Section 6 contains concluding remarks and discussion.

2. Description of the model

The system considered in the present paper consists of harmonically excited 2dof system of linear coupled
oscillators (with identical masses) and NES attached to it. By the term NES we mean a small mass (relative to
the linear oscillator mass) attached via essentially nonlinear spring (pure cubic nonlinearity) and linear viscous
damper to the linear subsystem as it is illustrated in Fig. 1.
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Fig. 1. Mechanical model of the system.
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As it was mentioned above masses of linear oscillators are identical and therefore may be taken as unity
without loss of generality (M ¼ 1). The system is described by the following equations:

€y2 þ k2y2 þ k1ðy2 � y1Þ ¼ �F 2 cosðotÞ,

€y1 þ k2y1 þ k1ðy1 � y2Þ þ �kvðy1 � vÞ3 þ �lð _y1 � _vÞ ¼ �F 1 cosðotÞ,

�€vþ �kvðv� y1Þ
3
þ �lð_v� _y1Þ ¼ 0, ð1Þ

where y1, y2, v are the displacements of the linear oscillators and NES, respectively, el is the damping
coefficient, eFi (i ¼ 1, 2) are the amplitudes of excitation of each linear oscillator. e51 is a small parameter
which establishes the order of magnitude for external excitation, damping, coupling and mass of the NES
which is adopted to be e (m ¼ e). Eq. (1) may be rescaled in the following way:

t ¼
ffiffiffiffiffi
k1

p
t;

d

dt
¼

ffiffiffiffiffi
k1

p d

dt
; ~k2 ¼

k2

k1
,

~l ¼
lffiffiffiffiffi
k1

p ; ~F 1 ¼
F 1

k1
; ~F2 ¼

F2

k1
; ~kv ¼

kv

k1
. ð2Þ

Substitution of Eq. (2) into Eq. (1) yields

y002 þ ð
~k2 þ 1Þy2 � y1 ¼ � ~F 2 cosðotÞ,

y001 þ ð
~k2 þ 1Þy1 � y2 ¼ � ~F 1 cosðotÞ � � ~kvðy1 � vÞ3 � �~lðy01 � v0Þ,

�v00 þ � ~kvðv� y1Þ
3
þ �~lðv0 � y01Þ ¼ 0, ð3Þ

where prime denotes the differentiation with respect to t. Two natural frequencies of the linear oscillators are
assumed to be of the same order of magnitude, incommensurate and remote (distance between dimensionless
frequencies is of order O(1)). Therefore the value of spring stiffness ~k2 was chosen in a way to provide two
distinct incommensurate natural frequencies—of course, it is the most generic case, since any significant
internal resonance should be treated as exceptional situation. Thus, taking ~k2 ¼ 1 one obtains the following
natural frequencieso2 ¼

ffiffiffi
3
p

; o1 ¼ 1. Such choice may seem rather restrictive, but from the following
development it will be clear that the particular values of the frequencies are of no significance for analytic
procedure proposed. The only significant physical condition is an absence of internal resonances in the linear
subsystem.

Modal coordinates are introduced according to following relationship:

y1 ¼
1ffiffiffi
2
p ðx1 þ x2Þ,

y2 ¼
1ffiffiffi
2
p ðx1 � x2Þ, ð4Þ
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Transformation of Eq. (3) to modal coordinates yields

x002 þ 3x2 ¼ �
� ~A2ffiffiffi
2
p cosðotÞ �

� ~kvffiffiffi
2
p

ðx1 þ x2Þffiffiffi
2
p � v

� �3

�
�~lffiffiffi
2
p

ðx01 þ x02Þffiffiffi
2
p � v0

� �
,

x001 þ x1 ¼
� ~A1ffiffiffi
2
p cosðotÞ �

� ~kvffiffiffi
2
p

ðx1 þ x2Þffiffiffi
2
p � v

� �3

�
�~lffiffiffi
2
p

ðx01 þ x02Þffiffiffi
2
p � v0

� �
,

�v00 þ � ~kv v�
ðx1 þ x2Þffiffiffi

2
p

� �3

þ �~l v0 �
ðÞ x01 þ x02
� �

ffiffiffi
2
p

� �
¼ 0, ð5Þ

where ~A1 ¼ ~F 1 þ ~F2; ~A2 ¼ ~F 1 � ~F2.
Additional rescaling is performed as follows:

~x1 ¼
x1ffiffiffi
2
p ; ~x2 ¼

x2ffiffiffi
2
p ; ~� ¼

�

2
. (6)

New coordinates are substituted into Eq. (5), this brings the system to more convenient form:

~x002 þ 3 ~x2 ¼ �~� ~A2 cosðotÞ � ~� ~kvð ~x1 þ ~x2 � vÞ3 � ~�~lð ~x01 þ ~x02 � v0Þ,

~x001 þ ~x1 ¼ ~� ~A1 cosðotÞ � ~� ~kvð ~x1 þ ~x2 � vÞ3 � ~�~lð ~x01 þ ~x02 � v0Þ,

~�v00 þ ~� ~kvðv� ~x1 þ ~x2Þ
3
þ ~�~lðv0 � ~x01 þ ~x02Þ ¼ 0, ð7Þ

For the sake of convenience ‘tilde’ will be dropped in further expressions.

3. Analytic treatment

The present subsection is fully devoted to the analytical study of the periodic regimes and SMR in the
vicinity of two most dangerous resonances, where the frequency of the external excitation is close to 1 or

ffiffiffi
3
p

(modal natural frequencies of linear subsystem).

3.1. Periodic regimes

Periodic regimes are sought using complex-averaging method. Before we proceed with direct calculation of
the periodic responses it is convenient to perform additional algebraic manipulation. Thus leaving the first two
equations of Eq. (7) unchanged we derive the third equation by adding the first two equations of Eq. (7) and
subtracting from the sum the third equation of Eq. (7). Defining new variable as follows:

x1 þ x2 � v! w, (8)

system (7) is rewritten in the more convenient form:

x002 þ 3x2 ¼ ��A2 cosðotÞ � �kvw
3 � �lw0,

x001 þ x1 ¼ �A1 cosðotÞ � �kvw3 � �lw0,

w00 þ 3x2 þ x1 ¼ �ðA1 � A2Þ cosðotÞ � ð1þ 2�Þkvw3 � ð1þ 2�Þlw0. ð9Þ

We begin our treatment from the excitation in the vicinity of the first mode. Thus, an excitation frequency is
detuned off in the following form:

o ¼ 1þ �s. (10)

Complex variables are introduced as follows:

x01 þ ix1 ¼ j1 expðitÞ,

x02 þ ix2 ¼ j2 expðitÞ,

w0 þ iw ¼ jw expðitÞ, ð11Þ

where j1, j2, jw are assumed as slowly evolving compared to the frequency of external excitation.
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Introducing Eqs. (10) and (11) into Eq. (9) and averaging over one period of the external excitation we
obtain the following system of slow modulation:

j02 � ij2 ¼
��A2

2
expði�stÞ þ

3�

8
ikv jw

�� ��2jw �
�l
2
jw,

j01 ¼
�A1

2
expði�stÞ þ

3�

8
ikv jw

�� ��2jw �
�l
2
jw,

j0w þ
i

2
jw �

3i

2
j2 �

i

2
j1 ¼

�ðA1 � A2Þ

2
expði�stÞ

þ ð1þ 2�Þ
3

8
ikv jw

�� ��2jw � ð1þ 2�Þ
l
2
jw.

ð12Þ

As one can note, system obtained in Eq. (12) is not autonomous then additional change of variables should
be applied in order to reduce the system into the autonomous one.

Complex variable ji may be written in general form:

ji ¼ Ni expðiyiÞ. (13)

New phase coordinate is introduced:

gi ¼ yi � �st. (14)

By substituting Eq. (14) into Eq. (13) and performing simple algebraic manipulations, Eq. (12) are reduced
to the autonomous form:

_j2 þ ið�s� 1Þj2 ¼
��A2

2
þ

3�

8
ikv jw

�� ��2jw �
�l
2
jw,

j1 þ i�sj1 ¼
�A1

2
þ

3�

8
ikv jw

�� ��2jw �
�l
2
jw,

_jw þ i
1

2
þ �s

� �
jw �

3i

2
j2 �

i

2
j1 ¼

�ðA1 � A2Þ

2

þ ð1þ 2�Þ
3

8
ikv jw

�� ��2jw � ð1þ 2�Þ
l
2
jw. ð15Þ

In order to compute the periodic response regimes of the system we seek for the fixed points of Eq. (15).
Thus, setting ð _j1 ¼ _j2 ¼ _jw ¼ 0Þ we obtain a system of algebraic equations:

ið�s� 1Þj20 ¼
��A2

2
þ

3�

8
ikv jw0

�� ��2jw0 �
�l
2
jw0,

i�sj10 ¼
�A1

2
þ

3�

8
ikv jw0

�� ��2jw0 �
�l
2
jw0,

i
1

2
þ �s

� �
jw0 �

3i

2
j20 �

i

2
j10 ¼

�ðA1 � A2Þ

2

þ ð1þ 2�Þ
3

8
ikv jw0

�� ��2jw0 � ð1þ 2�Þ
l
2
jw0. ð16Þ

Solutions of Eq. (16) refer to the periodic regimes and are easily calculated by simple algebraic
manipulations:

a2ā2 jw0

�� ��6 þ ða2ā1 þ a1ā2Þ jw0

�� ��4 þ a1ā1 jw0

�� ��2 ¼ a3ā3,

jw0 ¼
�a3

a1 þ a2 jw0

�� ��2 ,
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j20 ¼
i�A2

2ð�s� 1Þ
þ

3�kv

8ð�s� 1Þ
jw0

�� ��2jw0 þ
i�l

2ð�s� 1Þ
jw0,

j10 ¼ �
iA1

2s
þ

3

8s
kv jw0

�� ��2jw0 þ
il
2s

jw0,

a1 ¼ ið�sþ 1=2Þ þ
3�l

4ð�s� 1Þ
þ

l
4s
þ ð1þ 2�Þ

l
2
,

a2 ¼ �
9i�kv

16ð�s� 1Þ
þ

3ikv

16s
þ

3i

8
kvð1þ 2�Þ

� �
,

a3 ¼
3�A2

4ð�s� 1Þ
�

A1

4s
�
�ðA1 � A2Þ

2
. ð17Þ

Saddle node and Hopf bifurcations were revealed by the stability analysis. They are marked on the
frequency response diagram (Fig. 2).

We proceed with an excitation in the vicinity of the second mode. Thus, frequency of excitation is detuned
off near the second mode in the following way:

o ¼
ffiffiffi
3
p
þ �s. (18)

In this case it is convenient to rescale the time scale of Eq. (9) with respect to natural frequency of the
second mode:

~t ¼
ffiffiffi
3
p

t. (19)

Writing Eq. (9) in terms of new time scale one obtains

x002 þ x2 ¼ �� ~A2 cosðo~tÞ � � ~kvw
3 � �~lw0,

x001 þ
1
3
x1 ¼ � ~A1 cosðo~tÞ � � ~kvw3 � �~lw0,

w00 þ x2 þ
1
3
x1 ¼ �ð ~A1 � ~A2Þ cosðo~tÞ � ð1þ 2�Þ ~kvw3 � ð1þ 2�Þ~lw0, ð20Þ

where ~A2 ¼ A2=3; ~A1 ¼ A1=3; ~kv ¼ kv=3; ~l ¼ l
� ffiffiffi

3
p

; ~s ¼ s
� ffiffiffi

3
p

. Prime denotes differentiation with
respect to ~t.
Fig. 2. Thin solid line relates to stable solution and bold solid line relates to unstable ones.
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Complex coordinates here are introduced as

x01 þ ix1 ¼ j1 expði~tÞ,

x02 þ ix2 ¼ j2 expði~tÞ,

w0 þ iw ¼ jw expði~tÞ. ð21Þ

Introducing Eq. (21) into Eq. (20) and averaging over one time period of external excitation one obtains
slow modulated system (the treatment is quite identical to one in the vicinity of the first resonance):

j02 þ i� ~sj2 ¼ �
� ~A2

2
þ

3

8
i� ~kv jw

�� ��2jw �
�~l
2
jw,

j01 þ i � ~sþ
1

3

� �
j1 ¼

� ~A1

2
þ

3

8
i� ~kv jw

�� ��2jw �
�~l
2
jw,

j0w þ i � ~sþ
1

2

� �
j1 ¼

i

2
j2 þ

i

6
j1 þ

�ð ~A1 � ~A2Þ

2
þ ð1þ 2�Þ ~kv

3

8
i jw

�� ��2jw � ð1þ 2�Þ
~l
2
jw. ð22Þ

Fixed points of Eq. (22):

a2ā2 jw0

�� ��6 þ ða2ā1 þ a1ā2Þ jw0

�� ��4 þ a1ā1 jw0

�� ��2 ¼ a3ā3,

jw0 ¼
�a3

a1 þ a2 jw0

�� ��2 ,
j20 ¼

i ~A2

2 ~s
þ

3 ~kv

8 ~s
jw0

�� ��2jw0 þ
i~l
2 ~s

jw0,

j10 ¼ �
i� ~A1

2ð� ~sþ 1=3Þ
þ

3� ~kv

8ð� ~sþ 1=3Þ
jw0

�� ��2jw0 þ
i�~l

2ð� ~sþ 1=3Þ
jw0,

a1 ¼ ið� ~sþ 1=2Þ þ
�~l

12ð� ~sþ 1=3Þ
þ

~l
4 ~s
þ ð1þ 2�Þ

~l
2
,

a2 ¼ � i
� ~kv

16ð� ~sþ 1=3Þ
þ

3 ~kv

16 ~s
þ

3

8
~kvð1þ 2�Þ

 !
,

a3 ¼ �
�ð ~A1 � ~A2Þ

2
þ
~A2

4 ~s
�

� ~A1

12ð� ~sþ 1=3Þ
. ð23Þ

Saddle node and Hopf bifurcations were also revealed in case of second mode excitation by the stability
analysis. They are marked on the frequency response diagram (Fig. 3).

By now we have described periodic solutions in the vicinity of each excited mode of the system. In the
current paper we do not bring conditions for the local bifurcations of periodic solutions in the space of the
system parameters as it was done in Refs. [22,30] due to an awkwardness of calculations (Fig. 4).

3.2. Strongly modulated response description

Strongly modulated regime has been extensively studied in papers [21–24,29]. Analytical study of SMR
brought here is fully based on the results of papers [22,23,29]. As in a case of periodic regimes, analytical
treatment of SMR will be carried out separately for each excited mode. Thus, we start with an excitation in the
vicinity of the first mode. Frequency of excitation is detuned off as it was done in Eq. (10). It is essential to
note that by exciting the first mode the magnitude of the second mode will be of order e since two modal
natural frequencies are remote and incommensurate. Let us rewrite system (7) in the following way:

x002 þ 3x2 ¼ ��A2 cosðð1þ �sÞtÞ � �kvðx1 þ �x2 � vÞ3 � �l x01 þ �x
0
2 � v0

� �
,

x001 þ x1 ¼ �A1 cosðð1þ �sÞtÞ � �kvðx1 þ �x2 � vÞ3 � �lðx01 þ �x
0
2 � v0Þ,

v00 þ kvðv� x1 � �x2Þ
3
þ lðv0 � x01 � �x

0
2Þ ¼ 0. ð24Þ
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Fig. 3. Thin solid line relates to stable solution and bold solid line relates to unstable one.

Fig. 4. Projection of the slow invariant manifold of the system in accordance with Eq. (33), l ¼ 0.2. The unstable branch is denoted by

dashed line. Arrows denote hypothetic jumps in the regime of the relaxation oscillations.
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Further analytical treatment of SMR in the vicinity of (1:1) resonance (first mode excitation) concerns only
the last two equations. As it will be shown latter the terms which include ex2 may be omitted in the
analysis, then it is convenient to keep it in the equations without change. Following the analysis performed in
Ref. [22,23] successive changes of variables are performed:

u ¼ x1 þ �v,

w ¼ x1 � v ð25Þ
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(transition to coordinates ‘‘center of mass—internal displacement’’) and

ju expðitÞ ¼ _uþ iu,

jw expðitÞ ¼ _wþ iw, ð26Þ

where complex variables jj, j ¼ 1, 2 describe slow modulation of variables u and w, respectively, yield the
following equations for modulation amplitudes (keeping only the terms up to order O(e)):

j0u þ i�sju þ
i�

2ð1þ �Þ
ðju � jwÞ ¼

�A1

2
,

j0w þ i�sjw þ ð1þ �Þ
l
2
jw þ

i

2ð1þ �Þ
ðjw � juÞ

þ kvð1þ �Þ
�3ið1þ �Þ

8
jw

�� ��2jw þ � 3w2x2

	 
� �
¼
�A1

2
. ð27Þ

Two coupled differential equations of Eq. (27) may be combined into one of the second order:

j00w þ
d

dt
aþ

i�

2ð1þ �Þ
þ i�s

� �
jw

�
þð1þ �Þkv �

3i

8
jw

�� ��2jw þ � 3w2x2

	 
� ��

þ
i�

2ð1þ �Þ
ð1þ 2sÞ ajw þ kv �

3i

8
jw

�� ��2jw þ � 3w2x2

	 
� �� �
�

i�b
2ð1þ �Þ

jw ¼
�A1b
2

, ð28Þ

where

a ¼
lð1þ �Þ

2
þ

i

2ð1þ �Þ
þ i�s; b ¼

i

2ð1þ �Þ
.

Multiple scale expansion is introduced as

jw ¼ jwðt0; t1; . . .Þ;
d

dt
¼

q
qt0
þ �

q
qt1
þ � � � ,

tk ¼ �
kt; k ¼ 0; 1; . . . . ð29Þ

Substituting Eq. (29) into Eq. (28) and equating the like powers of e one obtains equations for zero and the
first-order approximations:

�0 :
qjw

qt20
þ

q
qt0

ljw

2
þ

ijw

2
�

3ikv jw

�� ��2jw

8

" #
¼ 0,

�1 : 2
q2jw

qt0qt1
þ

q
qt1

ljw

2
þ

ijw

2
�

3ikv jw

�� ��2jw

8

" #

þ
q
qt0

l
2
þ

i

2ð1þ �Þ
þ is
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The first equation of Eq. (30) describes ‘‘fast’’ evolution of the averaged system. It can be trivially
integrated:

q
qt0

jw þ
i

2
jw þ

l
2
jw �

3ikv

8
jw

�� ��2jw

� �
¼ Cðt1; . . .Þ, (31)

where C is arbitrary function of higher order time scales. Approximations of higher orders are not used in
current analysis. Then for the sake of brevity only dependence on time scales t0 and t1 will be denoted
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explicitly below. Fixed points F(t1) of Eq. (31) depend only on time scale t1 and obey algebraic equation:

i

2
Fþ

l
2
F�

3ikv

8
Fj j2F ¼ Cðt1Þ. (32)

Eq. (32) is easily solved by taking F(t1) ¼ N(t1) exp(iy(t1)) and performing trivial calculations:

l2 þ 1�
3kv

2
N4 þ

9k2
v

16
N6 ¼ 4 Cðt1Þ

�� ��2,
or, equivalently

l2 þ 1�
3kv

2
Zðt1Þ

2
þ

9k2
v

16
Zðt1Þ

3
¼ 4 Cðt1Þ
�� ��2,

Zðt1Þ ¼ ðNðt1ÞÞ
2. ð33Þ

Expression for argument of the fixed point may be written as

yðt1Þ ¼ arg Cðt1Þ � tan�1
1� 3ikv=4Zðt1Þ

2

l

� �
, (34)

where Z(t1) is solution of Eq. (33). Number of solutions of Eq. (10) depends on |C(t1)| and l. Function in the
left-hand side can be monotonous or have maximum and minimum. In the former case the change of |C(t1)|
has no effect on the number of solutions—Eq. (10) will have one positive solution. In the latter case the change
of |C(t1)| will bring about a pair of saddle–node bifurcations. In order to distinguish between different cases
we should check whether the derivative of the left-hand side of Eq. (33) has roots. If they exist, they are
expressed as

Z�1;2 ¼
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3l2

p
3

. (35)

Therefore two roots and pair of saddle–node bifurcations exist for lo1=
ffiffiffi
3
p

and do not exist otherwise. At
critical value lo1=

ffiffiffi
3
p

two saddle–node bifurcation points coalesce, thus forming a typical structure of a cusp
catastrophe.

It is easy to see from Eq. (31) if only one solution of Eq. (33) exists, it is stable with respect to time scale t0. If
there are three solutions, two of them are stable (nodes) and one—unstable (saddle). Therefore at time scale t0
the phase point will be attracted to one of the nodes. In fact, Eq. (32) defines slow invariant manifold (SIM) of
the problem. In the case lo1=

ffiffiffi
3
p

the fold lines N1;2 ¼
ffiffiffiffiffiffiffiffiffi
Z�1;2

p
; yðt1Þ 2 ð0; 2pÞ, divide stable and unstable

branches of the SIM. Fig. 1 demonstrates projection of the two-dimensional (2D) SIM on the plane (N, C), the
fold lines correspond to the points of maximum and minimum.

It is well known [25–27] that such structure of the SIM may give rise to relaxation-type oscillations of the
system (the hypothetic ‘‘jumps’’ between the stable branches are denoted by arrows at Fig. 1). Still, such
motion is possible only if the system can reach the fold lines while moving on the SIM with respect to the slow
time scale. Investigation of such motions and necessary conditions for their persistence was done in details in
Refs. [22,23,29]. In the present work we only bring the main results of the SMR analysis done by Gendelman
et al. [22,23,29]. By now we have described qualitatively the nature of the SMR response. In order to
accomplish analysis of the SMR we should also describe the behavior of F(t1) on the SIM (upper and lower
branches). For this sake, we consider the e1 term of multiple-scale expansion namely the second equation of
Eq. (30). We are interested in the behavior of the solution on the stable branches of the SIM
Fðt1Þ ¼ limt0!þ1 jwðt0; t1Þ. Taking the limit t0-N in the second equation of Eq. (30) and taking
into account the asymptotic stability of the points of the stable branches with respect to time scale t0, one
obtains
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Eq. (36) can be written in the more convenient form:
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16
kvð1þ 2sÞ Fj j2Fþ

iA1

4
. ð37Þ

System presented in Eq. (37) describes dynamics on the stable branches of the SIM. Results obtained
in the present analysis as it was demonstrated in Ref. [29] make it possible to depict the SMR via 1D maps.
We will briefly repeat the main results of Ref. [29] and as an example will construct the 1D map depicting
the SMR in the limit e-0. We start with the phase portrait constructed for the slow evolved system (37)
(Fig. 5).

Observing the phase portrait presented in Fig. 5 one can easily note that there are phase trajectories on
either low stable branch or upper one which reach the folds. These trajectories actually allow the existence of
SMR. However, it is quite obvious that an existence of these trajectories on each stable branch of SIM cannot
guarantee the stability of the SMR. The reason for that is a possibility of the SMR to be attracted to another
stable response (e.g. simple periodic) after several jumps from one stable branch to another. In order to track
the stability of the SMR response and thus to allow the tools for prediction of its existence 1D maps are
assembled. This approach was developed in Ref. [29] and will be applied here. Observing the phase portrait
presented at Fig. 5 we can see that there is an interval of y [Y1oyoY2] for which all the phase trajectories are
repelled from the lower fold N1 (|F| ¼ N1). In the regime of the relaxation oscillations, the phase trajectory
jumps from a point of this interval to the upper branch of the SIM, then it moves along the line of the slow
flow to the upper fold line, then jumps back to the lower branch and moves to the lower fold line, commencing
in one of the points of the interval [Y1,Y2] in order to enable the next jump. Therefore it is natural to consider
this regime as mapping of the interval [Y1,Y2] into itself—the regime of the relaxation oscillations will
correspond to attractor of this 1D map. Existence of this attractor is therefore necessary and sufficient
condition for existence of the SMR for Eq. (27), or, equivalently, Eq. (28), when the mass ratio e is small
enough.

In order to build the relevant mapping, we should consider separately the ‘‘slow’’ and the ‘‘fast’’ parts of the
mapping cycle. As for the ‘‘slow’’ parts on the lower and the upper branches of the SIM, we can use Eq. (37)
and directly connect the ‘‘entrance’’ and ‘‘exit’’ points. Due to complexity of the equations, this part of the
mapping should be accomplished numerically. As for the ‘‘fast’’ parts, the function j2 should be continuous at
Fig. 5. Phase portrait of the slow invariant manifold (only stable branches of the SIM are shown).
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the points of contact between the ‘‘fast’’ and the ‘‘slow’’ parts. Therefore, for ‘‘fast’’ parts of the motion one
obtains complex invariant C(t1), defined by Eq. (32). If one knows its value at the point of ‘‘start’’, it is
possible co compute N and y for the point of ‘‘finish’’ unambiguously and thus to complete the mapping. The
procedure of numerical integration should be performed twice—for two branches of the SIM. Two invariants
should be computed for two ‘‘fast’’ jumps, in order to determine their final points. It should be stressed that
Fig. 6. One-dimensional mapping; s ¼ �0.5, A1 ¼ 0.6, l ¼ 0.2. Horizontal bold lines refer to the basin of jump Y1oyoY2, arrows

denote direction of mapping.

Fig. 7. One-dimensional mapping; s ¼ �1.45, A1 ¼ 0.6, l ¼ 0.2. Horizontal bold lines refer to the basin of jump Y1oyoY2, arrows

denote direction of mapping.
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only one computation cycle of the mapping for each point of the initial interval is required. This idea of
mapping is close to that used in paper [26] for analysis of chaotic attractors of the relaxation oscillations in the
state space of lower dimensionality.

Not every trajectory which starts from the lower fold of the SIM will reach the initial interval since it may be
attracted to alternative attractor at the upper or the lower branch of the SIM, if it exists. Of course, only those
points which are mapped into the interval can carry sustained relaxation oscillations. The mapping procedure
is illustrated in Figs. 6 and 7.

The mapping in Fig. 6 exists for all points of the interval and is obviously contractive; therefore
one can expect existence of stable attractor corresponding to the regime of the relaxation oscillations
(or SMR). In this case it is single-period cycle originating at a point yE0.51. By increasing the detuning
parameter value (the values of the forcing amplitude and the damping parameters remain the same),
one can note the changes that mapping diagram undergoes (Fig. 7). As it comes from the diagram (Fig. 7)
all the mapping lines tend to the right and there is also a region on the basin that does not contain any
lines. This region relates to the unaccomplished cycles, namely to the phase trajectories which started from
the region and have been attracted to the periodic response attractor before they have reached the basin
once more.

The mentioned trajectories are not illustrated on the diagram. Thus, the empty regions of basin on the
diagrams will be related to the trajectories that do not reach the basin once more. It is clear from Fig. 7 that
there is no stable attractor of the SMR and for every initial condition (IC) on the basin the system finally
(after sufficient number of cycles) leaves the basin. Consequently, the relaxation oscillations will exist in
transient response under certain ICs, but not in the sustained response. Such situation requires presence of
alternative attractor.

By now we can conclude that for some increased values of detuning parameter the SMR attractor vanishes.
Running with the values of detuning (s) and for each step performing the mapping one can track the value of
s for which the attractor vanishes. This provides a general tool for determination of the frequency region for
the existence of SMR. For the current system, the boundaries of the detuning parameter within which the
SMR exists are sR ¼ 2.694s4sL ¼ �2.0546. So, as it was established earlier by direct numerical simulation,
the SMR exists in rather small vicinity of the exact 1:1 resonance.
Fig. 8. Sequence of mapping diagrams in the region (1oyoY1); horizontal bold lines refer to the basin of jump. Stable cycle is marked

with bold dashed line and unstable is marked with the bold solid line: (a) s ¼ 2.69, (b) s ¼ 2.67, (c) s ¼ 2.65, (d) s ¼ 2.63, (e) s ¼ 2.61 and

(f) s ¼ 2.55.
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Our next goal is to investigate the mechanism of ‘‘birth’’ of the limit cycle related to the SMR when the
detuning parameter passes its critical value. In Fig. 8 a sequence of mapping diagrams close to upper critical
value of the detuning parameter (s ¼ sR) is presented.

For the boundary value (s ¼ sR ¼ 2.69) we can see undistinguishable stable and unstable cycles,
separating while the detuning parameter is decreased. This scenario corresponds to simple fold bifurcation of
1D map—creation of stable and unstable fixed points. In the framework of current problem, it corresponds to
fold of stable and unstable limit cycles in four-dimensional (4D) state space of the averaged problem (4). This
global bifurcation is not related to behavior of fixed points or homoclinic orbits of the problem (the latter are
absent in this generic case) and cannot be treated by local analysis. Still, presence of the small parameter
related to the mass ratio allows us to reduce the global flow to the 1D nonlinear map and thus to demonstrate
this bifurcation in terms of local bifurcation of the map.

Hence, we have depicted the mechanism of creation and annihilation of the stable and unstable cycles about
the right boundary (sR) of the SMR existence. It is essential to check what happens about the left boundary
(sL). In order to understand the mechanism by which the loss of the stable cycle occurs we have zoomed the
area near the left end of the basin and plotted the diagrams for gradually decreasing values of the detuning
parameter near the left boundary (sL). The diagrams are presented in Fig. 9.

As one can see from the diagrams of Fig. 9 that for some value of detuning parameter we obtain the creation
of the unstable double period cycle right on the left end of the basin. Slightly decreasing the detuning
parameter value we can see the movement of the double period cycle from the left end of the basin inside the
interior region.

In order to provide an additional illustration of the SMR cycle attractor we have drawn the cycle on the
phase portrait plane. These cycles include the fast jumps (from one stable branch of SIM to another) and slow
evolution on SIM (Fig. 10).

By now we have accomplished the analytical treatment of the SMR in the vicinity of the first mode. The
treatment concerning the SMR in the vicinity of second excited mode is identical to the presented treatment.
We will briefly describe the analytical treatment of the SMR in occurrence of the second mode.
Fig. 9. One-dimensional mapping diagrams: (a) s ¼ �2.0511 and (b) s ¼ �2.052. The bold line refer to the unstable double period cycle.

The bold dashed line refers to the stable one period cycle.
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Fig. 10. The entire cycle of SQR; horizontal bold line refers to the initial interval Y1oyoY2. Dashed lines refer to the fast jumps and

solid line refers to the slow evolution on SIM, A ¼ 0.3, l ¼ 0.2, s ¼ 0.5.
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We start with new consideration of the detuning and proper system rescaling. In the case of second mode
excitation original system reads

x002 þ 3x2 ¼ ��A2 cosðð3þ �sÞtÞ � �kvð�x1 þ x2 � vÞ3 � �lð�x01 þ �x
0
2 � v0Þ,

x001 þ x1 ¼ �A1 cosðð3þ �sÞtÞ � �kvð�x1 þ �x2 � vÞ3 � �lð�x01 þ �x
0
2 � v0Þ,

v00 þ kvðv� x1 � �x2Þ
3
þ lðv0 � �x01 � �x

0
2Þ ¼ 0. ð38Þ

By the proper rescaling (as for the case of periodic regimes) Eq. (38) may be reshaped to more convenient
form:

x002 þ x2 ¼ ��A2 cosðð1þ �sÞtÞ � �kvð�x1 þ x2 � vÞ3 � �lð�x01 þ x02 � v0Þ,

x001 þ
1
3
x1 ¼ �A1 cosðð1þ �sÞtÞ � �kvð�x1 þ x2 � vÞ3 � �lð�x01 þ x02 � v0Þ,

v00 þ kvðv� �x1 � x2Þ
3
þ lðv0 � �x01 � x02Þ ¼ 0, ð39Þ

where

~A2 ¼
A2

3
; ~A1 ¼

A1

3
; ~kv ¼

kv

3
; ~l ¼

lffiffiffi
3
p ; ~s ¼

sffiffiffi
3
p ; ~t ¼

ffiffiffi
3
p

t.

Considering only the first and third equations we achieve the system identical to one already treated above
(first excited mode).
4. NES tuning

The tuning procedure is based on the analytical treatment results of previous section. As it was shown in
papers [24,28] SMR can be much more effective from a point of view of vibration absorption then the simple
periodic one in the close vicinity of main resonance (1:1). Thus, the main goal of the tuning procedure is to
allow excitement of the SMR in occurrence of each mode for the same attached NES (without changing NES
parameters). This situation may be realized in various engineering applications when the linear substructure is
subject to harmonic forcing in a wide range of the excitation frequencies. Thus there is a need for a protection
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of the system in the whole range of excitation frequency including both dangerous modes. We will
demonstrate the tuning procedure concept by considering the following example.

Example 1. Let us consider the following parameters of excitation amplitudes and mass of the nonlinear
absorber A1 ¼ 1, A2 ¼ 3, m ¼ e ¼ 0.01, correspondingly. We need to find a pair of NES parameters (kv, l)
which allows SMR excitation in the vicinity of each mode of linear subsystem. In order to find such a pair we
actually change NES parameters (kv, l) with a small step and for each pair we construct the 1D maps in the
occurrence of each excited mode. When we finally obtain a certain frequency ranges of SMR existence (stable
attractor of the 1D map) about each excited mode we actually satisfied the base requirement of the tuning
procedure. Let us imagine that we have performed the described procedure and found a certain pair of kv ¼ 1,
l ¼ 0.2 parameters which allow excitement of the SMR in the neighborhood of each mode. For this pair we
plot frequency-response diagrams for a vicinity of each mode (Fig. 11).

These diagrams consist of periodic regimes amplitudes and frequency range of existence of SMR calculated
using 1D map approximation described in the previous section.

Despite the excitement of the SMR in the vicinity of each mode one can note the dangerous situation in the
neighborhood of the left bound of the SMR for the first excited mode. Observing the diagram of Fig. 11 for
the first excited mode we can see Hopf bifurcation occurs on the lower stable branch slightly before the region
of SMR existence (left bound). This bifurcation causes an undesired effect on the system response since the
loss of stability by the lower branch will be accompanied by the jump to the upper stable branch which results
in large vibration amplitudes. In order to avoid this effect we should attempt to translate Hopf bifurcation of
the lower branch into the region of the SMR existence thus assuring continuation from lower stable branch
regimes into SMR (without jumps to higher amplitudes). Therefore, increasing damping parameter from
l ¼ 0.2 to 0.4 we plot the same frequency response diagrams for each excited mode (Fig. 12).

Frequency response diagrams presented at Fig. 12 suggest the continuation between lower stable branch
and SMR for both modes. In the next section numerical simulation for the entire frequency range (including
both modes) will be carried out for the systems with zero ICs and it will be shown that there are no jumps to
the upper branches. It is essential to note that there is also a possibility for the upper stable branch regimes
Fig. 11. Frequency response diagrams in occurrence of each excited mode. (a) Vicinity of the first excited mode (on ¼ 1) and (b) vicinity of

the second excited mode ðon ¼
ffiffiffi
3
p
Þ. SMR regions of existence calculated via one-dimensional map are bounded by the dotted lines. Solid

bold lines refer to unstable solution whereas thin solid lines refer to the stable ones.
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Fig. 12. Frequency response diagrams in occurrence of each excited mode. (a) Vicinity of first excited mode (on ¼ 1) and (b) vicinity of

second excited mode ðon ¼
ffiffiffi
3
p
Þ. SMR regions of existence calculated via one-dimensional map are bounded by the dotted lines. Bold solid

lines refer to unstable solution when thin solid lines refer to the stable ones.
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excitement by appropriate ICs. However, it will be shown in the following section that those regimes
may be excited only by high magnitudes of initial deflections relative to the amplitudes of an external forcing
(eA1, eA2). In the present work it is also assumed that an excited system does not suffer from strong additional
excitations (e.g. impacts, pulses) that are definitely able to push it to the upper branch.

Summarizing the results of an example provided above we have seen that it is not enough to excite the SMR
in the vicinity of both system modes, but it is also extremely important to follow after stability of the lower
branch of periodic regimes amplitude. As soon as we manage to translate the bifurcation point of the lower
branch of periodic response into the region of SMR existence we can enjoy the effectiveness of NES
application in a 2dof linear subsystem.

5. Numerical simulations

5.1. Numerical verification of the analytical model

We start numerical verifications of the analytical treatment from frequency response diagrams. Thus,
several periodic regimes amplitudes are obtained via numerical integration and are plotted together with
analytically derived frequency response curves (Fig. 13).

For the same system parameters (A1 ¼ 1, A2 ¼ 3, kv ¼ 1, l ¼ 0.4, e ¼ 0.01) we have estimated SMR bounds
of existence in the vicinity of each mode analytically (using 1D maps) and also via numerical integration. The
results of the analytical and numerical estimations are arranged in Table 1.

Verification results demonstrate fairly good agreement between analytic and numeric models.

5.2. NES performance in a wide range of system excitation

In order to study NES performance we plot system response (for zero ICs) vs. frequency of excitation in the
entire frequency range, including both modes of the linear subsystem. System response is presented in terms of
maximum linear subsystem energy like component ðmaxðy2

1 þ y2
2ÞÞ vs. frequency of excitation (Fig. 13(a)),
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Fig. 13. Numerical verification of frequency response diagrams for each excited mode. (a) Vicinity of first excited mode (on ¼ 1) and

(b) vicinity of second excited mode ðon ¼
ffiffiffi
3
p
Þ. Circles refer to the numerically derived response amplitudes. Solid lines relate to

the analytically obtained periodic regimes amplitudes: thin solid line refers to stable response and bold solid line refers to unstable one.

Table 1

Verification of the SMR bounds predicted analytically vs. numerical simulation in the vicinity of each mode

Mode no. Analytic estimation Numeric estimation

1 [�0.9:1] [�0.8:0.9]

2 [�1.6:1.3] [�1.4:1.2]
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maximal deflection of each dof of the linear subsystem (y1, y2) vs. frequency of excitation (Fig. 14(b and c)),
mean amplitude deflection of each dof of the linear subsystem vs. frequency of excitation (Fig. 14(d and e)).
On the same plots we also illustrate the response of an optimally tuned linear absorber. Linear absorber was
tuned numerically according to the objective function of the minimal sum of two resonant peaks of the
frequency response curve. System parameters for the following simulations are: A1 ¼ 1, A2 ¼ 3, kv ¼ 1,
l ¼ 0.4, e ¼ 0.01.

5.3. Excitation zones of preference for SMR

Effectiveness of the SMR has been demonstrated in several resent researches [21,24,28]. It was shown that
SMR appears as much more favorable than simple periodic regimes in the vicinity of resonance and for
relatively high amplitudes of excitations. This has motivated us to estimate numerically the parametric zones
of external amplitudes of excitation for which SMR generated by NES is better than system response with
best-tuned linear absorber attached. It should be noted that both linear and nonlinear vibration absorbers are
tuned according to the same criteria as in the previous subsection (minimal sum of resonant peaks of the
maximal response deflection). Fig. 15 demonstrates dots on a plane of external excitation (A1, A2) for which
SMR is preferable on the responses of the system coupled to the tuned linear absorber.

Observing the results presented in Fig. 15 one can note that preference of the SMR arises for the relatively
high amplitudes of excitation. This result is not surprising since it comes from the analytical model the upper
branch of the SIM does not depend on the amplitude of excitation. Therefore for some low amplitudes of
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Fig. 14. (a) Linear subsystem energy like response vs. frequency of excitation; bold line refers to the system response with NES attached

when dotted line refers to the system response with tuned linear absorber attached. (b and c) Maximal amplitude deflection of linear

subsystem dofs (y1,y2); bold line refers to the response with NES attached wheras dotted line refers to the response with tuned linear

absorber attached. (d and e) Mean amplitude deflection of linear subsystem dofs (y1,y2); bold line refers to the system response with NES

attached whereas dotted line refers to the system response with tuned linear absorber attached.
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excitation SMR may be already excited however system response will be rather high comparing with the case
of linear absorber application. In the case of high amplitudes of excitation system response with linear
absorber attached will overcome the SMR response. This is due to the fact that SMR is weakly affected by the
growth of the amplitude of excitation contrary to the case of linear absorber application.

5.4. Numeric estimation of the system robustness

Robustness of the response regimes in a linear oscillator with the NES attached to variation of the
parameters has been extensively studied in Refs. [22,24], but the issue of variations of the IC has not been
addressed. Still, this issue is crucial: if one succeeds to establish that for well-defined range of the IC the system
response will remain on ‘‘favorable’’ branch of the response curve, then the situation may be considered as
‘‘acceptable’ from the viewpoint of the vibration absorption despite presence of the other, less favorable
responses. In order to demonstrate the robustness of the periodic response regime related to the lower stable
branch of the frequency response curves and SMR we have performed numerical integration for the random
set of ICs. Thus, randomly picking 300 triples of initial deflections (x10, x20, v0) in the following range
ð�0:5pðx10; x20; v0Þp0:5Þ, original Eq. (7) was integrated numerically in the vicinity of each mode. Randomly
selected values of ICs for which Eq. (7) was integrated are presented in Fig. 16.

Each simulation was done for the random set of initial deflections data (initial velocities are set to zero)
shown in Fig. 16. Two frequencies of excitation were picked for each mode. The first selected frequency refers
to the region of two stable periodic regimes coexistence not including SMR. The second one refers to the
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Fig. 16. Random data of the initial deflections in the range ð�0:5pðx10;x20; v0Þp0:5Þ.

Fig. 15. External excitation plane, dots are related to those excitation amplitudes for which SMR is preferable on the response of system

coupled to the tuned linear absorber.
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region of coexistence of SMR together with stable periodic response related to the upper branch of frequency
response curve. Frequencies of excitation are as follows:

First mode: o ¼ 1þ �s ðs ¼ �1; �0:8Þ;

Second mode : o ¼
ffiffiffi
3
p
þ �s ðs ¼ �1:5; �1Þ:

System parameters: A1 ¼ 1, A2 ¼ 3, e ¼ 0.01, l ¼ 0.4, kv ¼ 1.
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Fig. 17. Initial conditions data for several frequencies of excitation: (a) vicinity of the first mode (on ¼ 1, s ¼ �1), (b) vicinity of the first

mode (on ¼ 1, s ¼ �0.8), (c) vicinity of the second mode (on ¼
ffiffiffi
3
p

; s ¼ �1:5), (a) vicinity of the second mode (on ¼
ffiffiffi
3
p

; s ¼ �1:2).
Dots are related to the periodic r response regime of the lower stable branch and diamonds are related to the SMR.
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The results of the simulations are illustrated in Fig. 17. Each point of the random set of ICs is marked with
respect to the type of the steady-state response regime obtained by numerical integration started from this
particular IC. Thus ‘diamond’ marker refers to SMR, ‘dot’ marker refers to the periodic regime of the lower
stable branch and ‘circle’ marker refers to the one of the upper stable branch.

It is clear from the results presented at in Fig. 17 that for the frequency of excitation in zone of the
coexistence of two periodic regimes for both modes all the trajectories which correspond to the brought above
ICs are attracted to the lower stable branch of periodic response regime. For the frequency of excitation in
zone of the coexistence of SMR and periodic responses for both modes, all trajectories corresponding to the
same set of the ICs are attracted to the SMR. Obtained results provide additional confirmation of the
robustness of the periodic regime related to the lower stable branch and SMR in the vicinity of zero ICs. It is
essential to note that the range of initial deflections is of magnitude which is much higher than the amplitude
of the external excitation.

6. Conclusions

Present work extends the developed earlier [22–24,29,30] analytic methods for description of simple periodic
and strongly modulated regime to 3dof harmonically excited system. Considered system is comprised of
harmonically forced 2dof linear subsystem (primary system) and essentially nonlinear attachment. It is shown
that analytical methods developed in Ref. [29] for the description of periodic regimes and SMR may be
successfully applied to the described 3dof system in case when modal frequencies are remote and
incommensurate. Derived analytical model is used for estimation of system responses and guidelines for the
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nonlinear absorber tuning are formulated. Numerical verification of the analytical model is performed and
fairly good agreement is observed.

As it comes from numerical simulations in some cases of high amplitudes of excitation nonlinear absorber
may effectively absorb energy from the primary linear subsystem for both excited system modes. In these cases
nonlinear absorber appears to be much more favorable than linear one. Thus summarizing the drawbacks of
the essentially nonlinear vibration absorber we note its inefficiency for the low amplitudes of excitation and an
existence of additional branch of periodic regimes with relatively high magnitude. However as it was
demonstrated in the previous section the last drawback may be minimized by proper NES design and these
regimes are not excited for the certain range of ICs. The magnitude of this range is much bigger than the
amplitudes of an external excitation and thus provides a fairly good approximation to the real life
applications. It should be mentioned that the quasi-periodic notions of the absorber, which frequently are
associated with undesirable large-amplitude vibrations, in this particular system turn out to be favorable for
vibration absorption.
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